Personalized Question Routing via Heterogeneous Network Embedding
نویسندگان
چکیده
منابع مشابه
HINE: Heterogeneous Information Network Embedding
Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, ...
متن کاملQuestion Retrieval for Community-based Question Answering via Heterogeneous Network Integration Learning
Community-based question answering platforms have attracted substantial users to share knowledge and learn from each other. As the rapid enlargement of CQA platforms, quantities of overlapped questions emerge, which makes users confounded to select a proper reference. It is urgent for us to take effective automated algorithms to reuse historical questions with corresponding answers. In this pap...
متن کاملHeterogeneous Information Network Embedding for Recommendation
Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in recommender systems, called HIN based recommendation. It is challenging to develop effective methods for HIN based recommendation in both extraction and exploitation of the information from HINs. Most of HIN based recommenda...
متن کاملDid You Enjoy the Ride: Understanding Passenger Experience via Heterogeneous Network Embedding
Online taxicab platforms like DiDi and Uber have impacted hundreds of millions of users on their choices of traveling, but how do users feel about the ride-sharing services, and how to improve their experience? While current ride-sharing services have collected massive travel data, it remains challenging to develop data-driven techniques for modeling and predicting user ride experience. In this...
متن کاملPersonalized Question Answering
A common problem in Question Answering – and Information Retrieval in general – is information overload, i.e. an excessive amount of data from which to search for relevant information. This results in the risk of high recall but low precision of the information returned to the user. In turn, this affects the relevance of answers with respect to the users’ needs, as queries can be ambiguous and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.3301192